IPnom Home • Manuals • FreeBSD

 FreeBSD Man Pages

Man Sections:Commands (1)System Calls (2)Library Functions (3)Device Drivers (4)File Formats (5)Miscellaneous (7)System Utilities (8)
Keyword Live Search (10 results max):
 Type in part of a command in the search box.
 


math(3)

NAME

     math -- floating-point mathematical library


LIBRARY

     Math Library (libm, -lm)


SYNOPSIS

     #include <math.h>


DESCRIPTION

     These functions constitute the C math library.


LIST OF FUNCTIONS

     Each of the following double functions has a float counterpart with an
     `f' appended to the name and a long double counterpart with an `l'
     appended.	As an example, the float and long double counterparts of
     double acos(double x) are float acosf(float x) and long double acosl(long
     double x), respectively.

   Algebraic Functions
     Name	       Description
     cbrt	       cube root
     fma	       fused multiply-add
     hypot	       Euclidean distance
     sqrt	       square root

   Classification Functions
     Name	       Description
     fpclassify        classify a floating-point value
     isfinite	       determine whether a value is finite
     isinf	       determine whether a value is infinite
     isnan	       determine whether a value is NaN
     isnormal	       determine whether a value is normalized

   Exponent Manipulation Functions
     Name	       Description
     frexp	       extract exponent and mantissa
     ilogb	       extract exponent
     ldexp	       multiply by power of 2
     scalbln	       adjust exponent
     scalbn	       adjust exponent

   Extremum- and Sign-Related Functions
     Name	       Description
     copysign	       copy sign bit
     fabs	       absolute value
     fdim	       positive difference
     fmax	       maximum function
     fmin	       minimum function
     signbit	       extract sign bit

   Residue and Rounding Functions
     Name	       Description
     ceil	       integer no less than
     floor	       integer no greater than
     fmod	       positive remainder
     llrint	       round to integer in fixed-point format
     round	       round to nearest integer
     trunc	       integer no greater in magnitude than

     The ceil(), floor(), llround(), lround(), round(), and trunc() functions
     round in predetermined directions, whereas llrint(), lrint(), and rint()
     round according to the current (dynamic) rounding mode.  For more infor-
     mation on controlling the dynamic rounding mode, see fenv(3) and
     fesetround(3).

   Silent Order Predicates
     Name	       Description
     isgreater	       greater than relation
     isgreaterequal    greater than or equal to relation
     isless	       less than relation
     islessequal       less than or equal to relation
     islessgreater     less than or greater than relation
     isunordered       unordered relation

   Transcendental Functions
     Name	       Description
     acos	       inverse cosine
     acosh	       inverse hyperbolic cosine
     asin	       inverse sine
     asinh	       inverse hyperbolic sine
     atan	       inverse tangent
     atanh	       inverse hyperbolic tangent
     atan2	       atan(y/x); complex argument
     cos	       cosine
     cosh	       hyperbolic cosine
     erf	       error function
     erfc	       complementary error function
     exp	       exponential base e
     expm1	       exp(x)-1
     j0 	       Bessel function of the first kind of the order 0
     j1 	       Bessel function of the first kind of the order 1
     jn 	       Bessel function of the first kind of the order n
     lgamma	       log gamma function
     log	       natural logarithm
     log10	       logarithm to base 10
     log1p	       log(1+x)
     pow	       exponential x**y
     sin	       trigonometric function
     sinh	       hyperbolic function
     tan	       trigonometric function
     tanh	       hyperbolic function
     tgamma	       gamma function
     y0 	       Bessel function of the second kind of the order 0
     y1 	       Bessel function of the second kind of the order 1
     yn 	       Bessel function of the second kind of the order n

     Unlike the algebraic functions listed earlier, the routines in this sec-
     tion may not produce a result that is correctly rounded.  In general, an
     unbounded number of digits of a value taken by a transcendental function
     may be needed to determine the correctly rounded result.


SEE ALSO

     fenv(3), ieee(3)



BUGS

     Several functions required by ISO/IEC 9899:1999 (``ISO C99'') are miss-
     ing, and many functions are not available in their long double variants.

     On some architectures, trigonometric argument reduction is not performed
     accurately, resulting in errors greater than 1 ulp for large arguments to
     cos(), sin(), and tan().

FreeBSD 5.4		       January 11, 2005 		   FreeBSD 5.4

SPONSORED LINKS




Man(1) output converted with man2html , sed , awk